Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(20): 24648-24657, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37170066

RESUMO

Stretchable sensors based on conductive hydrogels have attracted considerable attention for wearable electronics. However, their practical applications have been limited by the low sensitivity, high hysteresis, and long response times of the hydrogels. In this study, we developed high-performance poly(vinyl alcohol) (PVA)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) based hydrogels post-treated with NaCl, which showed excellent mechanical properties, fast electrical response, and ultralow hysteresis properties. The hydrogels also demonstrated excellent self-healing properties with electrical and mechanical properties comparable to those of the original hydrogel and more than 150% elongation at break after the self-healing process. The high performance of the optimized hydrogels was attributed to the enhanced intermolecular forces between the PVA matrix and PEDOT:PSS, the favorable conformational change of the PEDOT chains, and an increase in localized charges in the hydrogel networks. The hydrogel sensors were capable of tracking large human motion and subtle muscle action in real time with high sensitivity, a fast response time (0.88 s), and low power consumption (<180 µW). Moreover, the sensor was able to monitor human respiration due to chemical changes in the hydrogel. These highly robust, stretchable, conductive, and self-healing PVA/PEDOT:PSS hydrogels, therefore, show great application potential as wearable sensors for monitoring human activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...